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ABSTRACT

In this report, the decoding problem of multi-level block modulation codes
is investigated. It consists of two parts. In the first part, the hardware design
of soft-decision Viterbi decoder for some short length 8-PSK block modulation
codes is presented. An effective way to reduce the hardware complexity of the
decoder by reducing the branch metric and path metric, using a non-uniform
floating-point to integer mapping scheme, is proposed and discussed. The sim-
ulation results of the design are presented. In the second part, the multi-stage
decoding (MSD) of multi-level modulation codes is investigated. The cases of
soft-decision and hard-decision MSD are considered and their performance are
evaluated for several codes of different lengths and different minimum squared
Euclidean distances. It is shown that the soft-decision MSD reduces the de-
coding complexity drastically and it is suboptimum. The hard-decision MSD
further simplifies the decoding while still mantains a reasonable coding gain over
the uncoded system, if the component codes are chosen properly. Finally, some
basic 3-level 8 PSK modulation codes using BCH codes as component codes
are constructed and their coding gains are found for hard-decision multi-stage

decoding.
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CHAPTER 1

INTRODUCTION

Conventionally in digital communication, channel coding is
designed and performed separately from modulation. In the cases
of both block codes and convolutional codes, error control is
achieved by replacing k-tuple message with a well-structured n-
tuple codeword, where n > k. Transmission of these (n-k) redundant
symbols requires either a bandwidth expansion or a reduction of
data rate. Either case results in lowering the information rate per
channel bandwidth, known as the bandwidth efficiency. This type
of channel coding is suitable for power limited channels without
bandwidth constraints, where bandwidth efficiency is traded for
increased power efficiency and coding gain or reliability is
achieved at the expense of bandwidth expansion or reduction of
data rate. However, for channels with bandwidth constraint such
as voiceband telephone terrestrial microwave channels and mobile
and high speed satellite channels, bandwidth is a very precious
resource and bandwidth expansion is either not desirable or
possible. In the past, therefore, coding has never been popular for

bandlimited channel.

Recently, however, there has been increased interest in some
type of combined modulation and coding scheme known as coded-

modulation or bandwidth efficient coding, that achieves coding gain



with little or no bandwidth expansion. At first, it may seem that
this statement violates some basic power-bandwidth-error
probability trade-off principle. However, there is still a trade-off
at work: coded modulation achieves coding gain at the expense of
increased decoder complexity. In 1982, Ungerbock showed that by
combining coding and modulation properly, significant coding gain
over uncoded modulation systems can be achieved without
compromising bandwidth efficiency. Ever since a great deal of
research effort has been expended in bandwidth efficient coded
modulation for achieving reliable communication on bandlimited

channels.

The basic idea behind the coded-modulation is as follows.
The error performance of an uncoded non-orthogonal M-ary
modulation (such as PSK or QAM) depends largely on the distance

between the closest pair of signal points and is upper-bounded by

0.5 Ne erfc(dmin/2VYNo)

for a AWGN channel, where Ne is the average number of nearest
neighbours per signal point, dmin is minimum distance between the
signal points in the two dimensional Euclidean plane and No/2 is
the power spectral density of noise. The minimum distance is
determined by the average transmitter power and the number and
position of the signal points. For a constant average power, the
minimum distance between points decreases as the number of

points increases. Therefore, assuming a constant channel symbol



rate and constant average power, the error performance degrades
for systems that attempt to increase the transmission bit rate or

bandwidth-efficiency by increasing the size of the symbol set.

The basic concept of coded modulation is to encode the
information bits onto an expanded signal alphabet (relative to that
needed for uncoded modulation). This signal set expansion provides
the needed redundancy for error control without sacrificing
bandwidth efficiency. The expanded signal set does result in a
reduced distance between adjacent symbol points for a given
average power. However, coding is used to introduce a ceriain
dependency between successive signal points, such that only
certain pattern (or sequences) of signal points are permitted. Thus
the reduced distance between adjacent symbol points no longer
determines the error performance. Instead, the minimum Euclidean
distance between the members of the set of allowable symbol
sequences (codeword in signal space) determines the error

performance.

1.1 TYPES OF MODULATION CODES, PERFORMANCE MEASURE
AND OPTIMUM DECODING STRATEGY

In a coded modulation error control system, information
sequences are coded into signal sequences over a certain

modulation signal set (e. g. an 8-PSK signal set). These signal



sequences form a modulation code. Based on the code structure,
coded modulations are classified into two categories: trellis
coded-modulations (TCM) and block coded-modulations (BCM). In a
trellis coded modulation, an information sequence is encoded by a
convolutional code and mapped onto a modulation signal set by a
bit-to-symbol mapper. The resultant modulation code has a trellis
structure and hence can be decoded by the Viterbi decoding
algorithm. For this reason, we call this modulation code a trellis
modulation code. In block modulation code, a message of k bits is
encoded by block component codes of length n and mapped onto a
modulation signal set by a bit-to-signal mapper. The resultant
code is called a block modulation code. If the block component
codes are chosen properly, the resultant modulation code has a
trellis structure and hence can be decoded by the Viterbi decoding

algorithm.

In order to achieve good error performance, modulation codes
are generally decoded using soft-decision decoding based on an
Euclidean distance measure. The coding gain of a modulation code

is largely determined by its minimum squared Euclidean distance.

Let s be a point (X(s), Y(s)) in the two dimensional Euclidean
space R. Let s and s' be two points in R. The squared Euclidean

distance between s and s', denoted d(s,s'), is defined as follows:

d(s,s') = (X(s)-X(s)2 + (Y(s)-Y(s")2



letva=(s1,s2,...... . Sn) and v’ = (s1', 82", ....... Sn') be two n-
tuples over R. The squared Euclidean distance between v and v',
denoted |v-v'|]2 , is defined as follows:

n

v-v'2 = 3 (X(si) - X(si2 + (Y(si) - Y(si))2
i=1
{

Let C be a modulation code of length n with signals from a two-

dimensional modulation signal set S. The minimum squared
Euclidean (MSE) distance of C, denoted D[C], is defined as follows:

DIC) = min{ | v-v' |2 v, Vv'in C and v = v')
The effective rate of C, denoted R[C], is given by
R[C] = 1/2n log2 |C]

which is the average number of information bits transmitted by C
per dimension (of the signal set). The total number of information

bits in one codeword of C is called the dimension of C.

Assume that the channel is an additive white Gaussian noise
(AWGN) channel and all the code sequences of a modulation code are
equally likely to be transmitted. Let r = ((x1.y1), (x2,y2)),. .. .. ..
(xn,yn.)) be the output sequences of the demodulator. Then the
squared Euclidean distance between r and a code sequence V =
(s1,82....... sn)inC is

Ir-vi2 = Y (xi - X(si)2 + (yi - Y(si))2

i=1



For maximum likelihood decoding, the received sequence r is
decoded into a code sequence Vi if

Ir-vi |2 < |r-vj2

for al / # i. To perform soft-decision maximum likelihood
decoding, it is desirable for a modulation code to have a trellis
structure so that the Viterbi decoding algorithm can be applied to

reduce the number of computations and the decoder complexity.

Consider a coded modulation system using a modulation code
C with minimum squared Euclidean distance D[C] and effective rate
R[C). For the purpose of performance comparison, we choose a
proper reference system (coded or uncoded) using a modulation code
Cg with MSE distance D[Cg] and effective rate R[Cs]. Then, the
asymptotic coding gain (ACG) of the coded system C over the
reference system Cg (assuming same average power for both the
system) is given by

R(C].D[C]

10%ogi0 k11 DIC

The asymptotic coding gain is used as a simple measure of the

performance of a coded modulation system.

This research project is set up to investigate the decoding
problem of multi-level block modulation codes. The design of

optimum decoder for some short length modulation codes with



simple trellis structure is presented and alternate and practical

decoding schemes for more complex codes are investigated.

in Chapter 2, multi-level construction method for multi-level
code is reviewed. In chapter 3, hardware design of Viterbi
decoders for two short length 8-PSK block modulation codes is
described. The multi-stage decoding of multi-level codes is
investigated in chapter 4. Finally, chapter 5 is devoted to

concluding remarks.



CHAPTER 2

MULTI-LEVEL CONSTRUCTION OF MPSK BLOCK
MODULATION CODE

In this chapter, we describe a powerful technique for
constructing M-ary PSK block modulation code with arbitrary large

MSE distance, known as the multi-level construction.

2.1 CODE CONSTRUCTION

The construction steps are as follows:

1. Selection of a signal set: A set of 2! signal points is chosen.

2. Signal labeling by set partitioning: Each signal point is
labeled by a string of /bits. Such labeling is said to have / levels.
These label strings must be designed to provide the resultant
modulation code with the largest possible minimum squared
Euclidean distance when bits-to-signal mapping is performed.

Labeling is generally done by a set partitioning process.

3. Selection of component codes: The component codes may be

binary or nonbinary, block or trellis.

4. Code construction and bits-to-signal mapping:
Component codes are combined to form a label. Then, the label is
mapped into a signal point. This mapping results in a multi-level

modulation code.



if the number of component codes is equal to the number of
labeling levels (A, the resultant modulation code is called a basic
multi-level modulation code.

We use an example to demonstrate the construction.

1 Selection of a signal set: We consider 8-PSK signal set (or
constellation) as shown in figure 2.1, where each signal point is
labeled with an integer s from the set S = {0,1,2,3,4,5,6,7}. The
squared Euclidean distance between two signal points s and s' in

the 8-PSK signal set S is given by

d(s.s) = 4 sin2(5i;1’£)

2. Signal labeling by set partitioning: Binary digits are
assigned to each point in the 8-PSK signal space according to

Ungerbock’s set partitioning scheme.

Let X be the subset of S. The intra-set distance of X, denoted
d[X], is given by

d[X] = min {d(x, x') : x, x' in X}

Let X and Y be two subsets of S. The set separation between X and
Y, denoted d[X, Y], is defined as follows:

d{X, Y] = min {d(x, y) : x in X and y inY}



Fig. 2.1 8-PSK signal set
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we form a chain of partitions of the signal set S with
increasing number of subsets, increasing intra-set distances and
set separations as shown in figure 2.2. The partition process
results in 3 partitions of S with with increasing intra-set
distances. At each partitioning stage, a subset of S is labeled by a
binary sequence, and at the end of partitioning process, each signal

point is labeled with a binary string of 3 digits.

The first partition consists of two disjoint subsets which are
labeled by 0 and 1. The second partition consists of four disjoint
subsets which are labeled by 00, 01, 10 and 11 respectively. The
third partition consists of 8 disjoint subsets, each consisting of
only one signal point, which are labeled by 8 unique 3-tuples. The
partition is carried out in such a way, as the partition level
increasing, the intra-set distance (the minimum squared Euclidean
distance among signal points) of a set in a partition increases. For

the 8-PSK case, the intra-set distances at 3 partition levels are:
0586 , 2 , 4

The label strings formed from the above partitioning process have

the following important properties:

(1) Two signal points with labels different at the first position
are at a squared Euclidean distance at least d{ = 0.586 apart.

11
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Fig. 2.2 Signal labeling and 8-PSK/QPSK/BPSK partitioning chain
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(2) Two signal points with labels identical at the first position but
different at the second position are separated by a squared
Euclidean distance at least do = 2 apart.

(3) Two signal points with labels identical at the first two
positions but different at the last position are at a squared
Euclidean distance at least d3 = 4 apart.

The monotonically increasing property of the distances df, do
and d3 is one of the keys to the construction of bandwidth efficient
modulation codes. These distances are called the distance

parameters of the signal label strings.

From figure 2.2, we see that each subset in the first partition
is @ QPSK signal set and each subset in the second partition is a
BPSK signal set.

Each signal point s in S is labeled by a string of 3-bits. Let
abc be the label for signal point s in S. Then a, b and ¢ are 1st,2nd
and 3rd levels respectively. Let 1 be the mapping from binary
labeling to a point in signal space, then

p(abc)=s

The 8-signal points and their corresponding labels are shown
in figure 2.3. The label abc for s in S turns out to be the binary
representation of integer s. Each integer s in S can be expressed in

the following polynomial form

13



(110) 3

(001)4

(101} 5 7(111)

Fig. 2.3 8-PSK signal points and their labels
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s=bg +by.2+b2.22

where bj = 0 or 1 for 0 si s 2. The 3-tuples (bg, b1, b2 ) is the

binary representation of integer s.

Each prefix of a label represents a subset of signal points in
S. For example, prefix a represents 4 signal points in a QPSK signal
constellation, prefix ab represents 2 signal points in a BPSK signal
constellation and prefix abc represents a single signal point in
signal set S. Let Q(a) denote the set of signal points whose labels

have a as the prefix. Then,
Q(a)={ s: s is a signal point in QPSK signal constellation}

Let Q(ab) denote the set of signal points whose labels have ab as

the prefix. Then,
Q(ab)={s: s is a signal point in BPSK signal constellation}

Let di,d2 and d3 be the intra-set squared Euclidean distances

of S, Q(a) and Q(ab) respectively. For the 8-PSK signal
constellation d{=0.586, d2=2, d3=4.

3. Selection of component codes: For the construction of a
basic multi-level code, the number of component codes required is
equal to number of levels in the labeling of signal points. For
example, in 8-PSK signal set each signal point is labeled with 3
bits. Hence, 3 binary component codes are required to construct an

8-PSK block modulation code. All the component codes are chosen

15



to have equal length and proper minimum hamming distances. For 1
<1< 3, let Cj be a binary ( n, ki) code with minimum hamming

distances dj.

4. Code construction and bits-to-signal mapping: Let

a=(a1 @ a3 .......0000oenn an)
b=(bt b2 b3 ............... bn )
c=(C1 €2 €3 ... cn)

be three codewords in C1, C2 and C3 respectively. We form the

following sequences,
a*b*c=(aibyct azb2c2,

For 1 €i < n, we take i bj ci as the label of a signal point in the 8-

PSK signal set. Then,
p(a*b*c)=(platbyct) ........... J4(an bncn )
is a sequences of 8-PSK signals. The set
C={p(a*b+*c)aisinCy,bisinC2 and ¢ is in C3}
=C1 + C2C3

is a 3-level block 8-PSK modulation code. The minimum squared

Euclidean distance of a basic 3-level modulation code is [7]

D[C) = min{d1d1, d292 ,d393}

16



For a 3-level 8-PSK block modulation code,

D[C] = min{0.58631, 292 493}

2.2 ENCODING AND DECODING

Encoding of a 3-level basic 8-PSK modulation code C of length
n constructed based on the above method can be done as follows. A
message u of

3
k =Y koi

il
bits (called a segment) is divided into 3 sub-blocks, the i-th sub-
block consists of kpj bits. For 1 <i < 3, the ifth sub-block is
encoded into a code vector vj in the binary component code Cj of C.
Then

R(V) = u(vy * v2 * vg)

is a codeword in C for the message segment u. The components of
n(v) are then mapped into points in a 2-dimensional 8-PSK signal
set and transmitted. Hence, each message segment of k bits is

encoded into a sequence of n 8-PSK signals.

A soft-decision decoding algorithm for the above 8-PSK codes
can be devised as follows. For any element s in the group S = { 0,1,.
. 7}, let X(s) and Y(s) be defined as

17



X(s) = cos(rs/4), Y(s) = sin(xs/4)

For 1 < j s n, let (xi, yi) be the normalized output of a coherent
demodulator for the j-th symbol of a received frame. The received
frame is then represented by the following 2n-tuple: z = ((x1,y1),
(x2,y2,),. . ... ... (xn,yn)). For the received frame z and a codeword
V =(s1,82,... ,8n)in C, let |2,v|2 be defined as follows:

jz.v|2 = '21 (xi - X(s))2 + (yi - Y(si))2
Assume that the channel is an AWGN channel. Suppose every
codeword of C is transmitted with the same probability. Then we
have the following decoding rule: For a received frame z, choose a
codeword v in C with minimum |z,v|2. The segment u corresponding

to v is then the decoded segment. This decoding rule achieves

maximum likelihood decoding for C over an AWGN.

18



CHAPTER 3

DESIGN AND SIMULATION OF OPTIMUM DECODER FOR
SOME BLOCK MODULATION CODES

In this chapter, the design of Viterbi decoder using parallel
architecture for two short length block modulation codes is
presented. These codes are suitable as inner code in high speed
concatenated coded-modulation scheme. Since these codes have
trellis diagram of reasonable complexity, high speed Viterbi
decoder can be built on VLSI chip. The designs have been simulated
for different quantization-levels and branch metric computation
schemes and the actual coding gain over uncoded QPSK has been
found. Also, the overview of a possible VLS! chip structure of the
decoder for four-state code is given and various I/O pins are

discussed.

3.1 DESCRIPTION OF THE CODES

Code 1: The three binary component codes C1, C2 and C3 are as
follows: (1) C1 is the simple binary (8,1) repeatition code; (2) C2 is
the binary (8,7) code with all the even weight 8-tuples; (3) C3 is
the (8,8) binary code which consists of all binary 8-tuples. The
minimum Hamming distances of C1, C2 and C3 are d1=8, d2=2 and
d3=1 respectively. By using the multi-level construction method

(described in chapter two), these three binary components codes

19



result in a linear multi-level code, C= C1 ¢ C2 * C3 over the 8-PSK
signal set with minimum squared Euclidean distance D[C]=4,
dimension K=16, length=8 and effective rate R[C]=1. This code
provides 3 db asymptotic coding gain over the uncoded QPSK
modulation without bandwidth expansion. It has a 4-state trellis
diagram, as shown in figure 3.1, which consists of two identical
parallel 2-state trellis sub-diagrams without cross connections
between them. This structure suggests that the decoding of the
code can be done with two 2-state Viterbi decoders to process the
two trellis sub-diagrams in parallel. This implementation not only
reduces the decoding complexity but also speeds up the decoding
process. The code is 450 rotationally invariant allowing fast

rysynchronization on non-coherent channel [7).

Code 2: The three binary component codes C1, C2 and C3 are as
follows: (1) C1 is first-order Reed-Muller code of length 16 ((16,5)
code) represented by RM(4,1); (2) C2 is the binary (16,15) code with
all the even weight 16-tuples represented by P16; (3) C3 is the
(16,16) binary code which consists of all binary 16-tuples and is
represented by Vig. The minimum Hamming distances of C1, C2 and
C3 are 31=8, 92=2 and d3=1 respectively. Hence, the basic multi-
level modulation code of length 16 constructed by these component

codes is given by

C= RM4 1) P16 * Vie

20



code1

Fig. 3.1 Trellis diagram for 8-PSK modulation



This code has minimum squared Euclidean distance D[C]=4,
dimension K=36 and effective rate R[C]= 9/8 (greater than one).
This code provides 3.52 db asymptotic coding gain over the uncoded
QPSK modulation with less bandwidth (a bandwidth reduction).
However, It has 16-state trellis diagram, which makes the decoder

more complicated.

As far as decoding is concerned, the advantages of BCM codes
over TCM codes are as follows. (1) In case of BCM codes, the trellis
terminates after certain number of sections. Hence there is no
ambiguity about final survivor. In case of TCM codes, the decoder
has to choose an appropriate survivor from certain number of
survivors (one at each state) to make a decoding decision. This
implies some additional overhead on the decoder. (2) Since in case
of BCM codes, the entire codeword can be outputted in parallel,
decoding delay is less for short length codes. In case of TCM codes,

the decoding delay is 5 or more times the constraint length.

3.2 MODIFICATION OF TRELLIS DIAGRAM

For the simplicity of decoder (for high throughput) and the
associated circuit, the decoder should be designed to perform
identical operations in each and every section of the trellis. Hences,
it is desirable to have a trellis with the same inter-connection

structure in all the sections. Thus, the trellis diagram (figure 3.1)

22



of the code needs to be modified. Note that the initial and final
sections of the trellis are different from the rest of the
repeatitive sections. Initial and final sections have some states
and branches missing. The structure of the initial and the final
sections of the trellis is modified in a way that it has the same
form as th periodic sections of the trellis. The resulting trellis
diagram (TD) will be referred to as the modified trellis diagram
(MTD).

The MTD is obtained from the TD by introducing some
additional states (or nodes) and branches in the initial and final
sections of the trellis such that the inter-connection structure of
the entire 8-sections trellis in the MTD has exactly the same
periodic structure (figure 3.2). Note that since the initial and final
states are always the zero states, the encoder can never be in the
additional states introduced in the MTD. Therefore, these
additional states are invalid states while the states present in the
TD are valid states. Similarly, the additional branches introduced
in the MTD are invalid branches while the branches present in the
TD are valid branches. The decoder can never decode to a path
which contains an invalid state or an invalid branch. There must be

a mechanism built into the decoder to accomplish it.

We need to modify the initialization step of Viterbi
algorithm. That is, initialize the metric value of the valid state at

stage 0 to zero and the metric value of the invalid state at stage 0
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Modified Upper Trellis

Modified Lower Trellis

Invalid branches have been shown by dotted lines and invalid
states have been shown by bold circles.

Figure 3.2 Modified Trellis
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to bmax + 6, where bmax Is the largest value of the branch metric
and e > 0. The idea is to make sure that when a path originating
from the invalid state and the one originating from the valid state
are compared at the next stage i=1, the one originating from the

valid state is always the survivor. This can be shown as follows:

Let us consider the metric values of various paths converging
to state 1 at stage i=1. Let p1 be the metric value of the path
originating from the valid state and converging to state 1 at stage
i=1. Hence, p1 = initial metric value + branch metric value = 0 +
bm1, where bm1 is the smaller of the branch metrics of two
parallel branches converging to this state from the valid state. Let
p2 be the metric value of the path originating from the invalid
state and converging to state 1 at stage i=1. Hence, p2 = initial
metric value + branch metric value = bmax + € + bm2, where bm2 is
the smaller of the branch metrics of two parallel branches
converging to this state from the invalid state. Now, p2 - p1= bmax
+ © + (bm2 - bm1). Since (bm2 - bm1)min = -bmax and e > 0, p2 -
p1 > 0 or p1 < p2 for all possible values of bm2 and bm1. Hence, the

path originating from the valid state is the survivor.

Thus for the initialization of the metric values of the various
states as above, all invalid states and the branches introduced in

the initial section of the trellis are eliminated at stage i=1.

At stage i=7, the last section of the trellis, we simply

discard the invalid state, because we know that the final survivor
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is at other state (valid state). Thus introduction of invalid state
and branches in the final section of the trellis does not have any
affect on the decoder or decoding decision.

The above modification in the trellis diagram eliminates the
need of some additional hardware in decoder as well as some
overhead in decoding operations, which is otherwise required to
process the irregular sections (the initial and the final sections) of
the trellis by proper initialization of state or path metric
registers. Note that the above modification is significant for the
simplicity of implementation of decoder for a code with more

complex trellis.

3.3 DECODER DESIGN FOR THE FOUR-STATE CODE

As mentioned earlier, the entire decoder can be implemented
as two identical 2-state decoders, one to process the upper trellis
and other one to process the lower trellis. Hence, first the design
of the decoder to process the upper trellis is presented and the
design of the decoder to process the lower trellis will exactly be

the same except 'symbol-mapping circuit ' (discussed later).

The complete decoder design can be discussed in the

following five parts:

1. Quantization and branch metric computation scheme
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2. Add-compare-select (ACS) circuit design
3. Information sequence updating and storage
4. Outputting the decoded word

5. Control circuit design

3.3.1 QUANTIZATION & BRANCH METRIC COMPUTATION
SCHEME

For a coded-modulation system, the appropriate metric is the
squared Euclidean distance between the received symbol and the

symbol in the trellis.

Let S = {0,1,2,3,4,5,6,7). The elements in S represent the 8-
signal points in an 8-PSK signal constellation. For any i in S,

define
X(i) = cos(2xi/8), Y(i) = sin(2ri/8)

Let (X,Y) be the normalized output of a coherent 8-PSK
demodulator for a received symbol, where X and Y are in-phase and

qQuadrature components respectively. Then the ith branch metric is
M@) = (X-X([)2 + (Y-Y(i))2

for0<is?.
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Hence for each received symbol, 8 branch metrics are to be

computed.

We assume that the output of the demodulator, that is X and Y
components are given. Since the modulation is 8-PSK, quantization
with more than three bits was considered. Simulation resuits
(figure 3.10 (a)) showed that the four and five bits quantization
degrades the performance by 0.40 and 0.15 db respectively. Hence,
5-bits quantization was chosen for the design. The price of using
higher level quantization is a larger memory required to store the
branch metric (in case ROM look-up table is used for branch metric
computation). If the n-bits quantization is used, a ROM of capacity
8+22n words (length of the word determined by maximum value of

branch metric value) is required for branch metric computation.

X and Y components of the demodulator output are quantized
using five-bit (32-levels) uniform quantizer. The range of
quantization is determined by type of channel and signal-to-noise

ratio (SNR) and found as follows:

Suppose the operating SNR per symbol of the system is 9 db
and the channel is AWGN channel. Then,

10 log10(S/N)=9 db where, S=signal power=(1/2)A2
N=noise power= s2
Hence, s=0.25 A
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Since four times s covers more than 96% of the cases, hence
we choose the range of quantization from -1.5A to 1.5A, where A is
noise-free received signal amplitude.

By quantizing X and Y components of the received symbol into
32 levels each, we divide the two-dimensional Euclidean plane into
1024 squares (rectangular quantization). The received 8-PSK

symbol will fall into one of these 1024 squares.

Note that the computation of one branch metric requires two
multiplications and one addition. Eight such computations are
required during each decoding cycle. Multiplication is time
consuming. We can speed-up the metrics computation if we
compute all the metrics in parallel using fast and parallel
multipliers. But then the hardware complexity is going to increase
tremendously. Hence, for higher speed of decoder as well as to
reduce the hardware complexity, ROM look-up table is used for

branch metric computation.

For each 8-PSK symbol, the 1024 squared Euclidean distances
corresponding to all possible received signal points in two
dimensional Euclidean plane have been computed. These distances
are floating point numbers between 0 and 9.5. For high throughput
and reasonable hardware complexity, it is necessary to design the
Viterbi decoder which handles only integer and performs only

integer arithmetic. Hence, we need to map these floating point
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numbers into integer without allowing much degradation in

performance.

One straight forward way to do this mapping is multiply each
floating point number by some appropriate integer and then take the
nearest integer value. Simulation showed that if we multiply each
floating point number by 5 and then take the nearest integer value,
this results in negligible degradation in performance. Essentially,
by doing so we are able to distinguish between the distance

metrics x and x + 0.2, where 0 < x < 9.5.

The problem with the above uniform mapping scheme is that
it leads to increase in the branch metric range and hence the
number of bits required to represent the branch and path metric is
increased. Consequently, more hardware is required for all the
units ( adders, compafators, multiplexers etc.) in the ACS part of
the circuit. For example, for high speed decoder, carry look-ahead
adders are used, hardware requirement of which increases more
than in proportion for increase in each additional bit. Using above
mentioned mapping scheme, the maximum value of branch metric
came out to be 47, which requires 6 bits to represent a branch

metric and 7 bits to represent a path metric.

Since reducing the branch and path metrics range even by one
bit means a considerable savings in hardware, the following non-
uniform mapping of floating point branch metric value to integer

value is proposed:
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The branch metrics with lower values, which are more likely
to be the survivor are mapped with smaller range (essentially finer
distinction) and those metrics with larger values are mapped with
bigger range. The idea is, since the branch metrics with larger
values are unlikely to be the survivor, we do not need to make fine

distinction between two larger values of branch metrics.

We can divide the entire metric values (range 0-9.5) into two
groups: the first group contains lower metric values in the range 0-
4 and the second group consists of metrics with the values in the
range 4-9.5. The floating point metric value in the first group is
multiplied by 5 and then rounded off to the nearest integer value.
The floating point metric value in the second group is assigned the
next available integer with an interval of 0.5. Table 3.1 illustrates

the non-uniform mapping.

The mathematical formulation for the above non-uniform

mapping scheme can be given as follows:

Let F be the function that maps the floating point branch

metric value to an integer value. Then F is given by,
F(x) =i, i*0.2 < x < (i+1)*0.2, 0<isi9

=20 +i, 4+i*0.5 < x < 4+(i+1)*0.5, 0<ist
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Table 3.1 Non-uniform mapping of branch metric values

Eloating point value Integer_value
0.0-0.2 0
0.2-0.4
0.4-0.6 2
3.6-3.8 18
3.8-4.0 19
4.0-4.5 20
4.5-5.0 21
9.0-9.5 31

Thus, we limit the branch metric range to 31 and hence only 5
bits are required to represent the branch metric value. Similarly,
path metric registers and all other related units for ACS operation
now need 6 bits instead of 7. Two schemes were simulated. The
non-uniform mapping scheme reduced the number of bits by one,
thus reducing the hardware and gave negligible performance

degradation over uniform mapping scheme.
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The 1024 squared Euclidean distances for a particular 8-PSK
signal point is stored in a ROM whose storage capacity is 1024
words, each word consisting of 5 bits. We need 8 such ROMs for 8
signal points. Hence, total storage requirement is 8+1024+5 bits =
40 kbits of ROM.

The scheme for branch metric computation has been shown in
figure 3.3. X and Y (5 bits each) are quantized value of in-phase and
quadrature components of demodulator output. They act as address
input to ROM's. A separate ROM is being used for each branch
" metric. The output of each ROM is a 5-bit word which is branch

metric value and is passed to the ACS unit.

3.3.2 ACS CIRCUIT DESIGN

ACS circuit is the central unit of Viterbi decoder. It consists
of shift registers with (paralle! loading facility), adders,

comparators (or substractors) and multiplexers.

From the trellis diagram (figure 3.1), note that at each time
unit, there are four paths converging 10 each state requiring four
adders (to generate the four path metrics in parallel) and three
comparators (to compare these four metrics in parallel) for that
state for parallel ACS operation. We show that if we divide the ACS

operations in two steps, we can save in hardware.
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In the first step, two branch metrics corresponding to pair of
parallel branches which originates from the same previous state
are compared and one with larger metric value is discarded. This
results in generation of only two new paths at each state at each
time unit. Hence, there remains only two path metrics to be
compared at each state which is done in the second step of ACS
operation. This scheme leads to reduction of one comparator and

two adders per state which is considerable saving in hardware.

Because of addition, comparison and multiplexing operations,
certain minimum time is required for ACS operations. Hence, proper
number of clock cycles must be allowed for entire ACS operations

and control circuit must take care of the delay required.

The detailed ACS circuit diagram has been shown in figure 3.4
(a) and 3.4 (b). R1 to R4 are 5 bit registers with parallel loading
facility which contain four branch metrics for upper trellis. C1 and
C2 are 5 bits comparators. MUX1 and MUX2 are 2 to 1 five bits
multiplexers. The circuit in figure 3.4 (a) executes the first step
of ACS operation. It compares the branch metrics of the parallel
branches in the trellis and selects the one with the lower metric

value.

Simulation results showed that if we limit the branch metric
value to 5 bits {maximum 31), the maximum path metric value at
BER 10-5 and 10-6 is 50 and does not exceed 52 at higher BER.
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Hence, path metric registers (S1.82) should be 6 bits registers and
associated adders, comparators and multiplexers all must be 6 bits
units. Based on simulation results, we can safely assume that at
acceptable BER, there will be no overflow in the ACS section of the
decoder. Note that the metric normalization circuit (to avoid
overflow) is not needed since the trellis terminates after eight

sections.

The circuit in figure 3.4 (b) executes the second step of ACS
operation, that is generation of new paths, comparison and
selection. S1 and S2 are 6 bits state or path metric registers for
state one and state two respectively. P1 to P4 are 6 bits adders.
For high speed decoder, carry look-ahead adders should be used. C3
and C4 are 6 bits comparators. MUX3, MUX4, MUX5 and MUX6 are 6
bits 2 to 1 multiplexers. The output of MUXS5 and MUX6 (which
contain survivor path meirics after each ACS operation) are
connected to the input of path metric registers through MUX3 and
MUX4 respectively. The purpose of MUX3 and MUX4 is to select from
the initial value (0 or 32) of path metrics (in the beginning of
decoding of a new code word) or survivor path metric after each
ACS operation (rest of the time). Note that the comparators can be
replaced by fast substractors to further improve the speed of ACS

operation.
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The complete input connection for the path metric register
has been shown in figure 3.5. Whenever the count (which keeps
track of the number of section being processed in the trellis) is
000, that is the start of the decoding of a new code word. Hence,
multiplexer ( MUX3 and MUX4 ) selects initial value of path metrics

(0 and 32 corresponding to valid and invalid states respectively)
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3.3.3 INFORMATION SEQUENCE UPDATING AND STORAGE

The register exchange method is used for information
sequence updating and storage. The registers in which these
sequences are stored are interconnected in precisely the same
fashion as the ACS circuit. Each time a new branch is processed,
the registers are interchanged corresponding to which sequence
survives the comparison and a new symbol is added at one end of

each registers.

The complete circuit-diagram for this part of the decoder has
been shown in figure 3.6. H1 and H2 are two 24 bits path history
registers (for storage of 8 symbols each 3 bits long) with parallel
loading as well as serial shifting facility. MUX1 and MUX2 are 2 to
1 24 bits multiplexers. Based on the results of comparatdrs C3 and
C4 in the ACS section, information sequences are updated in

registers H1 and H2.

Depending upon the results of comparators C1,C2,C3 and C4
(in ACS section), the new symbols corresponding to the survived
branch are generated by' symbol-mapping circuits. The complete
truth-table and logic design of these circuits have been shown in
figure 3.7. Newly generated symbols are parallely loaded to buffer
registers (serial-to-parallel converters) and then serially shifted

to path history registers H1 and H2.
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SYMBOL MAPPING CIRCUIT DESIGN FOR UPPER TRELLIS

STATE 1
COMPARATORS OUTPUT SURVIVED SYMBOL
c1 c2 c3 Q2 Q1 Qo
0 X 1 1 1 1
1 X 1 0 1 1
X 1 0 0 0 1
X 0 0 1 0 1

Q0= HIGH

Q1=C3

Q2=NOT(C1) C3 + NOT(C2) NOT(C2)
STATE 2
COMPARATORS OUTPUT SURVIVED SYMBOL
ct  c2 c4 Q2 Q1 Qo
X 1 1 0 0 1
X 0 1 1 0 1
1 X 0 0 1 1
0 X 0 1 1 1

Q0= HIGH

Q1= NOT C4

Q2=NOT(C2) C4 + NOT(C1) NOT(C2)
X = Do not care state
NOT = Inverse

Figure 3.7
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3.3.4 OUTPUTTING DECODED WORD

After 8 branches have been processed (which is indicated by
count 111), the path metrics for state one (valid state) of decoders
for the upper and lower trellis are compared and appropriate path
history register content is outputted. This is indicated to the user
by making the output ready line HIGH. The diagram for this part of
the decoder has been shown in figure 3.8. S1 and S2' are path
metric registers of state 1 from decoderi and decoder2

respectively.

Also, if the path metric value of the final survivor exceeds
some predefined value (determined by acceptable BER), then it can
be detected by a threshold circuit and an indication can be given to
the user whether the decoded code word is unreliable or safely
acceptable. This provision of error detection or reliability
indicator for decoded code word can be included in the output
circuit. Simulation studies showed that the maximum path metric
values of the final survivor for BER 10-5 and 10-6 are 8 and 6

respectively.

3.3.5 CONTROL DESIGN

We have 8 clock (recovered from the received symbols) cycles

to (1) initialize the path metric registers, (2) process 8 sections of
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the trellis, and (3) output the decoded word and other required
signals. A modulo-8 counter is used to keep track of the number of
sections of the trellis processed. A separate input-line must be

provided to reset the counter externally, whenever necessary.

During each clock cycle of the received symbol, all the
following operations must be performed and corresponding control

signals must be generated by the control-circuit.

step 1: The A/D converters makes available the quantized value of X
and Y components of the 8-PSK demodulator output at the address

input-line of ROMs and a start pulse initiates the control circuit.

step 2: If count is 000, initialize the state or path metric
registers. (load 0 and 32 in two path metric registers by applying

control signal to parallel enable input of these registers)

Also, make the 'output ready line' LOW and ‘output error line' too, if
HIGH, LOW.

step 3: ROMs read cycle. At the end of this cycle, branch metrics

are available at the output lines of ROMs.

step 4 Load branch metric registers R1 to R4. Control signal is
applied to parallel enable input of registers R1 to R4.

step §: Delay cycle. (In order to allow sufficient time for entire

ACS operations)
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step 6: Register exchange cycle in path history section. (control
signal is applied to parallel enable input of buffer registers for
new survived symbol (generated by symbol mapping circuit) and
parallel enable input of path history registers)

step 7: Serial shift of 1st bit of new symbol from buffer register
to path history register.

step 8: Serial shift of 2nd bit of new symbol from buffer register
to path history register.

step 9: Serial shift of 3rd bit of new symbol from buffer register
to path history register.

step 1Q: Update the state metric registers. (Control signal is

applied to parallel enable input of path metric registers)

step 11: If count is 111, (a) output the decoded code word. (control
signal to parallel enable input of output buffer register) (b) Make
the output ready line HIGH. Also, if final survivor path metric
exceeds some limit (detected by threshold circuit), another output
line should be made HIGH indicating that decoded word should not
be accepted.

step 12: Increment the counter (by applying control signal to clock
input of counter) and wait for the next start pulse to process the

next section in the trellis.
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SYMBOL MAPPING CIRCUIT DESIGN FOR LOWER TRELLIS

STATE 1
COMPARATORS OUTPUT SURVIVED SYMBOL
Ci C2 C3 Q2 Qi
Qo
0 X 1 1 1 0
1 X 1 0 1 0
X 1 0 0 0 0
X 0 0 1 0 0
Q0= LOW
Q1=C3
Q2=NOT(C1) C3 + NOT(C2) NOT(C3)
STATE 2
COMPARATORS OUTPUT SURVIVED SYMBOL
Ci c2 C4 Q2 Qi
Qo
X 1 1 0 0 0
X 0 1 1 0 0
1 X 0 0 1 0
0 X 0 1 1
0
Q0= LOW
Q1= NOT C4

Q2=NOT(C2) C4 + NOT(C1) NOT(C2)

Figure 3.9
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The entire circuit for the decoder to process the lower trellis
is exactly the same as the one to process the upper trellis
discussed so far except for the symbol mapping circuit design
which is shown in figure 3.9. These two decoders can share the

same control circuit if built on a single chip.

3.4 SIMULATION RESULTS FOR 4-STATE CODE

The simulation results are shown in figure 3.10(a) and
3.10(b). Note that in case of ideal Viterbi decoder (no quantization
and no floating point to integer conversion of branch metrics, hence
decoder handles floating point arithmetics), the actual coding gain
is 1.5 db over the uncoded QPSK (with grey code indexing) at BER of
10-5 without bandwidth expansion.

4-bit quantization results in 0.40 db loss whereas 5-bit
quantization results in 0.15-0.20 db loss. Also, for floating point
to integer conversion of branch metric values, the difference in
performance between multiplication factors 4 and 5 (named as
uniform mapping 2 and uniform mapping 1 respectively in the figure
3.10(b)) is 0.3 db. The multiplication factor 5 was found good
enough. The factor 4 results in maximum integer branch metric
equal to 37, whereas the factor 5 results in maximum integer

branch metric equal to 47. Also, note that the difference in
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performance between uniform and non-uniform floating point to

integer mapping is negligibly smail.

3.5 CHIP STRUCTURE

A possible chip layout structure for the Viterbi decoder for
4-state code has been shown in figure 3.11. The input and output

lines description are as follows:

IN 1-10: Output from A/D converter (quantized value of
normalized X and Y components of demodulator output), address

input for ROMs.

IN 11: Input line to reset the counter externally whenever
necessary and restart the decoding. Hence, this line provides

external word synchronization.

IN 12: Input line to give a start pulse to the control circuit. Each
time a new symbol is received and digitized by A/D converter, the
latter gives a start pulse 1o the decoder through this line to

process the next section in the trellis.
IN 13: Input line for high frequency clock pulse for control circuit.
IN 14-15: Power and ground lines.

OUT 16-39: Decoded code word is available on these output lines.
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OUT 40: This output line goes HIGH whenever a new code word is
available on the output line 12-35.

OUT 41: This line can act as a possible error indicator. it goes
HIGH whenever the path metric value of final survivor exceeds

some pre-defined value.

Complete decoder including ROM look-up table for branch
metric can be built on a single VLSI chip but the chip size will be
very big. Note that the number of pins in the chip can be reduced if
the decoded code word is outputted serially (one symbol at a time).
If the two sub-decoders are integrated on single chip, they share

the same control circuit.

3.6 THE DECODER DESIGN FOR 16-STATE CODE
3.6.1 DESCRIPTION OF THE TRELLIS DIAGRAM

The trellis diagrams of the component codes for this
modulation code has been shown in figure 3.12. The overall trellis
diagram for the modulation code consists of four identical parallel
4-state special kind of trellis sub-diagrams without cross-
connections among them. The trellis sub-diagrams (with
modification for ease of implementation) are shown in figure 3.13.
Each trellis sub-diagram is a special kind of four-section trellis

such that each branch itself is a four-sections, 2-state small
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Fig.3.13 Trellis for the modulation code
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trollis. The two parallel lines in the diagram represent a 2-state,
4-sections small trellis. Note that the dotted lines correspond to
the invalid branches. At stage 1 and stage 16 of decoding process,
there is only one valid state in each sub-diagram, that is the statet

of first small trellis in each trellis sub-diagram.

The diagram of one such small trellis, which constitutes the

branch of the trellis sub-diagram, is shown in figure 3.14. These

O A LArx__LAh_A)

Y XY XY ¥

Figure 3.14 Small Trellis

small trelleses, in general, has different branch labels in
different sections in contrast to a normal trellis, where each
section of the trellis has the same branch label. There are four
such small trelleses inherent in each one of the four trellis sub-

diagrams of the modulation code.

Hence, for the entire decoder, we have o have total 16 2-
state decoders one for each small trellis. The design of these
decoders is the same as for 4-state code (discussed before) except

some modifications (to be discussed).
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It is obvious from the trellis sub-diagram that after eight
and twelve sections of the trellis have been processed by the 2-
state decoders, additional comparisons are to be made and
corresponding path metrics and path history registers are to be
updated. After 16 symbols have been processed (that is the
completion of the processing of one code word), the survivor from
each trellis sub-diagram is at state 1 of 2-state decoder for first
small trellis. The final survivor is obtained by comparing these

four survivors. This completes the decoding process.

The circuit design of the decoder to process the first trellis
sub-diagram is discussed and the design of decoders for three other

trellis sub-diagrams will exactly be the same.

3.6.2 ACS CIRCUIT

The ACS circuit for 2-state decoder for a single small trellis
is shown in figure 3.15. M1 to M4 are smaller of the branch metrics

of four pairs of parallel branches in the trellis.

The difference between this circuit and ACS circuit for the
decoder for codel is (1) additional 5 bits multiplexers MUX1 and
MUX2 (figure 3.15) are required and (2) multiplexers connected to
the inputs of path metric registers are 3 to 1 rather than 2 to 1.
The need of additional multiplexers (MUX1 and MUX2) arises,
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because the small trellis, in general, has different branch labels in
different sections. The mod-16 counter output controls the
selection of appropriate branch metric. Since additional
‘comparison and select operation' needs to be performed after each
time eight and twelve sections of the trellis have been processed,
the muitiplexers connected to the inputs of path metric registers
have to be 3 to 1 multiplexers. The first input is for initialization
of the path metrics (when count is 0), the second input is to store
the result after additional comparison-select operation {when
count is 7 and 12) and the third input is to update the path metric

after normal ACS operation in each time unit.

Note that 16 such ACS circuits (one for each 2-state small
decoder) are required for the entire decoder whereas in the case of
4-state decoder for code 1, we require bnly two such ACS circuits

with less complexity.

In addition, four more 6 bits comparators and multiplexers
per trellis sub-diagram are required for additional comparisons and
updating of path metrics after each time eight and twelve sections
of the trellis have been processed. Hence, note that the hardware
requirement for the decoder for 16-state code is roughly 10 times

larger than that of for the 4-state code.
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3.6.3 PATH HISTORY UPDATING CIRCUIT

The path history updating circuit using register exchange
method for a single 2-state small decoder is shown in figure 3.16.

MUX1 and MUX2 are 3 to 1 48 bits multiplexers. H1 and H2 are

48 bits path history registers for storage of 16 symbols each 3
bits long. Additional path history updating is required after each
time eight and twelve symbols have been processed. Hence, the
survived sequence after additional comparison is connected to the
third input of the multiplexer. Four additional 2 to 1 48 bits
multiplexers per trellis sub-diagram are required to accomplish
the additional path history updating after each time eight and

twelve symbols have been processed.

3.6.4 OUTPUT CIRCUIT

After 16 symbols have been processed, the four survivor path
metrics from the four valid states (one from each trellis sub-
diagram) are compared, and the appropriate path history content is
outputted. The diagram for this part of the decoder is shown in
figure 3.17. The comparison of four path metrics is performed in
two stages by three 6 bits comparators. The comparison results
are used to control a 4 to 1 48 bits multiplexer, whose input lines

are connected to the outputs of the path history register of statet
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of first small decoder for each trellis sub-diagram. The

multiplexer outputs the final survived sequence.

3.6.5 CONTROL DESIGN

Step1 to step 10 remains the same as given in control design

for code1l.
Step 11. If count is 0111 or 1011:

(a) make additional comparisons of path metrics.

(b) Update the path history registers (by applying the

control signal to parallel enable input of path history registers).

(c) Update the path metric registers (by applying the

control signal to parallel enable input of path metric registers).
If count is 1111:

(a) output the decoded codeword (by applying the control

signal to parallel enable input of output buffer register).
(b) Make the output ready line go HIGH.

Step 12:. Increment the counter and wait for the next start pulse.
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3.7 SIMULATION OF 16-STATE CODE AND SIMULATION
RESULTS

Simulation results for 16-state code have been shown in
figure 3.18. The actual coding gain (at BER 10-9) for unquantized
Viterbi decoder is 1.3 db (less than 4-state code) over uncoded
QPSK. However, there is a reduction in bandwidth. 5 bits
quantization results in 0.3 db loss. Once again, the non-uniform
floating point to integer mapping scheme reduces the branch metric

and path metric range without sacrificing coding gain.
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CHAPTER 4

MULTI-STAGE DECODING OF MULTI-LEVEL CODE AND
PERFORMANCE EVALUATION

4.1 INTRODUCTION

Since the performance of a block modulation code is largely
determined by its minimum squared Euclidean distance, the
optimum decoding strategy for AWGN channel (assuming equal a
priori probabilities) is soft decision maximum likelihood decoding
based on the squared Euclidean distance. This requires computing
the squared Euclidean distances of the received signal sequence
from each of the 2XK;j codewords in signal space and selecting the
code word which has minimum squared Euclidean distance. If the

value of Tkjis large, this method becomes prohibitively complex.

If each of the component codes has trellis structure, the
modulation code also has trellis structure. The trellis diagram of
the modulation code is the direct product of the trellis diagrams of
its component codes. Because of the multiplicative nature, the
trellis diagram of the modulation code can be quite complicated
with large number of states and large number of parallel branches
even if the component codes have relatively simple trellis
structure. Hence, even if a modulation code has trellis structure, it

might not be practical to implement the Viterbi decoder for it.
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This is true, in particular, for the modulation code with large
minimum squared Euclidean distance and long length.

Hence, it is obvious that for practical purposes, it is
necessary to devise a sub-optimum but practical decoding
algorithm. The multi-stage decoding is very attractive solution to

this problem.

The basic idea behind the multi-stage decoding of muiti-level
modulation code is as follows. The multi-stage decoding of multi-
level block modulation code is based on their multi-level structure.
Since the multi-level block modulation code consists of m
component codes, we decode each of these component codes
separately in m stages. The most powerful component code is
decoded first and the least powerful component code is decoded
last. The decoded information (or code word) in each stage is
assumed to be correct and is stored in a buffer to be used by the
later stages. The process continues stage by stage for m stages

until all the information bits have been recovered.

At each stage of decoding, we can perform soft-decision
maximum likelihood decoding or other sub-optimum decoding (e.g.
algebraic decoding) depending on the component code being decoded.
In other words, at each decoding level, we may take advantage of
the structure of the component code. If each component code has
trellis structure with reasonable number of states and parallel

branches, we can decode each component code using a soft-decision
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Viterbi decoder. If component codes have complex trefleses and
soft-decision Viterbi decoding is not practical, then we may use
hard-decision algebraic decoding.

4.2 MULTI-STAGE DECODING ALGORITHM FOR MULTI-LEVEL
BLOCK MODULATION CODE

We illustrate the multi-stage decoding algorithm of basic
multi-level modulation code by considering an example of 3-levels
8-PSK modulation code. It can be easily generalized for higher
levels and other modulation codes. The basic idea remains the

same.

Since basic 3-levels 8-PSK modulation code consists of 3
component codes, there are three stages of décoding. The
schematic diagram for multi-stage decoding of 3-level 8-PSK block
modulation code is shown in figure 4.1 where r is the received
vector, and k1 to k3 are decoded message bits in the 1st, 2nd and
3rd stages respectively. Note that the decoded codeword in a stage
is passed to all other later stages. The decoding process begins
with the first level component and ends at the third level (last
level) component code. One important observation that can be made
from this diagram is that the multi-stage decoding creates
pipelined parallelism in the decoding process. This is very

desirable structure for high speed system.
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4.2.1 SOFT-DECISION MULTI-STAGE DECODING

Decoding in each stage is done by a soft-decision maximum
likelihood decoder based on the squared Euclidean distance. Hence,

decoding for each component code is optimum. Assume that the
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channe! is an AWGN channel. Letr=(r,r2,........ Jn) be the
received sequence at the output of the 8-PSK demodulator, where r
= (xj, yi) is a point in the two dimensional Euclidean plane.

First decoding stage

leta=(at,@2,.....-ccv--- ,an ) be a binary codeword in the
component code C1.

Compute the squared Euclidean distances between rj and the signal
points in Q(aj). Recall that Q(aj) represents a QPSK signal set
(shown in figure 4.2) which is obtained by partition of 8-PSK signal
set with prefix aj. Since there are four points in Q(aj), there are
four such distances. Compare these four distances and find the
minimum one. Let dri, Q(aj)] be the minimum squared Euclidean
distance between rj and the points in Q(aj). For every codeword a
in C{, compute the distance, ’

d(r, a) -i dlri, Q(ai)]

im1

Note that the total number of such computations required is 2k1, f

C1 has a simple trellis structure, this computation will be greatly
reduced. Decode rinto a* for which d(r,a*) is the minimum. The
decoded codeword a‘ is stored in a buffer to be used in the second

and third stages of decoding.



Second decoding stage

The decoded codeword a‘ of the first stage is passed to the second
stage. Letb=(by,b2,............ ,.bn ) be a binary codeword in
component code C2.

Compute the squared Euclidean distances between ri and the points
in Q(aj* bj). Recall that Q(aj* bj) represents a BPSK signal set

which is obtained by partition of 8-PSK signal set with prefix
aj*bj. Since there are two points in Q(aj* bj), there are two such

distances. Compare these two distances and find the smaller one.

Let d[ri, Q(aj* bi)] be the minimum squared Euclidean distance
between rj and the points in Q(aj* bj). For every codeword b in C2,
compute

d(r, a*b) = dlri, Q(ai*bi))
j=1

Decode r into codeword b* for which d(r, a‘b*) is the minimum.
The dedoded codeword is stored in a buffer to be used in the third

stage.
Third decoding stage

The decoded codewords at the first and second stages, a* and b*
are available to the third stage. Let d[ri,Q(ai'bij*ci)] denotes the

squared Euclidean distance between received symbol rj and the
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point In 8-PSK signal set with labeling a*bj‘ci. For every
codeword C=(C{,02, -« «ccovvcuess .Cn ) in C3, compute

d(r, a*b°c) -i dri, Q(ai*bi*ci)]
istd

-i dlri, un(ai*bi*ci)]
is1

Decode r into codeword ¢* for which d(r, a’b*c’) is the minimum.
This completes the decoding. u(a*+b*+c*) forms the decoded 8-

PSK signal sequence.

The soft-decision multi-stage decoding algorithm can be
summarized as follows. The squared Euclidean distances (metrics)
of received symbol from all 8-PSK signal points are computed and
are made available to the soft-decision maximum likelihood
decoders for each component codes. The decoding at each stage is
done in three steps: (1) selection of proper signal set (with proper
labeling) based on received symbol and the decoded informations in
the previous stages, (2) finding the signal with minimum distance
in the selected set, and (3) computation of appropriate metric for
decision. |f each component code has a trellis structure, then the
Viterbi decoding algorithm can be applied to decode each component

code.

The soft decision multi-stage decoding is not optimum even
though the decoding of each component code is optimum. It is sub-

optimum. The difference in performance between the optimum
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decoding and the sub-optimum soft-decision multi-stage decoding
has been found very small, a fraction of db in coding gain, for many

multi-level modulation codes.

4.2.2 HARD-DECISION MULTI-STAGE DECODING

In case component codes do not have simple trellis structure,
it is hard to perform soft-decision maximum likelihood decoding
for each component code based on Euclidean distance. Also, in some
cases soft-decision decoding can be too expensive. n general, the
component codes chosen to construct the multi-level block
modulation codes are well known binary block codes with well
established decoding algorithm based on hard decision of the
demodulator. Hence, the main idea behind the hard decision multi-
stage decoding of_ multi-level block modulation code is to further
simplify the decoding of each component code by employing known
algebraic decoding algorithms for these codes. Also, the hard-
decision multi-stage decoding provides more flexibility in the
construction of multi-level modulation code in the sense that we

can employ any class of binary block codes as component codes.

The decoding at each stage is performed in two steps. The
first step is hard demodulation or bit decision of each symbol

based on decoded codewords in previous stages. In the second step,
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the hard demodulated binary sequence is given to a binary block
code decoder.

Since at first stage of decoding, each 8-PSK symbol is hard
demodulated independently without the help of any other
information, the minimum squared Euclidean distance between the
signal sequences, which is the major performance criterion of a
modulation code, does not get a chance to play any role, a
significant coding gain can be expected to be lost in comparison
with the soft-decision multi-stage decoding. Note that while
making bit-decision at first stage, no other information is
| available to the detector. Rather, we have a worse situation.
Signal points are crowded and bit-decision is to be made by
independent hard demodulation of each symbol without the help of
any other information. On the other hand, since the decoded
information in the first stage is used for decoding in later stages,
we must make sure that decoding in first stage is correct. Hence,
the decoding in the first stage is entirely based on Hamming
distance of first level component code and this component code

should be chosen to have as high Hamming distance as possible.

The decoding algorithm is as follows. Letr = (ri,r2,.......
.,In) be the received sequence at the output of the demodulator,

where rjis a point in two dimensional Euclidean plane denoted by

R2,
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First decoding stage

Divide R2 plane into two decision regions, Rg2 and R12 where
Ro2 contains the signal points whose labels have 0 as the prefix
and R12 contains the signal points whose labels have 1 as the
prefix. For 3-level 8-PSK modulation code, the division of R2 is

shown in figure 4.3.

Hard decision: For 1 < i < n, make decision on the first label bit a;
based on the received symbol ri. If rj is a point in Rg2, set the
output of the first stage detector aj=0. If rj is a point in R12, set
the output of the first stage detector aj=1. Essentially, each rj is
demodulated independently into one of the 8 8-PSK symbols and aj

is set equal to the first label of the demodulated symbol.

Decoding C1: After the first label bit decisions have been made
for n received symbols, the binary vector a - (at,22, . ..........
.,an ) at the output of the detector is passed to the decoder for
component code Cq. The decoder C1 operates on vector a and puts
out the decoded codeword a*. The decoding may be maximum
likelihood decoding or algebraic decoding. The schematic diagram

of first-stage decoding is shown in figure 4.4.
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Figure 4.4 Schematic diagram of 1st stage hard decision decoding
Let
a*= (a1*,@2*, - -- ... i .an*)
be the decoded codeword in the first decoding stage.
Second decoding stage

The decoded codeword, a*, from the first decoding stage is
passed to the second stage. For aj'= 0, divide the R2-plane into
two decision regions, Rgo2 and Rp12, where Rgg?2 contains those
signal points whose labels have 00 as the prefix and Rg12 contains
those signal points whose labels have 01 as the prefix. For aj*=1,
divide the R2-plane into two decision regions, R102 and R112,
where R102 contains those signal points whose labels have 10 as

the prefix and R112 contains those signal points whose labels have

11 as the prefix.

For 3-level 8-PSK modulation code, the division of R2 plane

is shown in figure 4.5.

Hard decision: Depending on the value of aj*, the proper QPSK set
either {0,2,4,6} or {1,3,5,7} is selected. Decision on the second
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label bit bj is made depending upon which one of the two possible

decision regions for the selected QPSK signal set contains the
received sequence ri. For1 si<n,

If a*i=0 and r; is in the region R902, then set the output of the

second-stage detector,
bi=0.

If a*i=0 and rj is in the region Ro12, then set the output of the

second-stage detector,
bij=1.

If a*i=1 and rj is in the region R102, then set the output of the

second-stage detector,

bi=0.
If a*j=1 and rj is in the region R112, then set the output of the
second-stage detector,

bj=1.

Decoding C2: The sequence b=(b1,b2, ............ ,bn ) at the
output of the detector is passed to the decoder for C2, which
operates on b and puts out the decoded codeword b*. The schematic

diagram of the second stage decoder is shown in figure 4.6.
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Fig. 4.6 Schematic diagram of the 2nd-stage hard-decision

decoding
Let
b* = ( bi*.b2*, . ... ... .....bn*)
be the decoded codeword in the second stage of the decoding .
Third decoding stage

The decoded codewords, a* and b*, at the first and second
decoding stages is passed to the third stage. Based on ai'bi*, the
R2 plane is divided into two decision regions, Raj*bj*02 and
Raj*bj*12 where Raj*bj*02 contains the 8-PSK signal points with
aj*'bi'0 as label and Rai‘bi‘12 contains the 8-PSK signal points
with’ aj*bi*1 as label. For 3-level 8-PSK modulation code, the

division of R2 plane is shown in figure 4.7.
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Hard decision: The dibit aj*bi* is used to select the proper BPSK
signal set. There are four such set The decision on the third label
bit ¢ is made depending upon which one of the two possible
decision regions of the selected BPSK set contains the received

sequence i, The decision is made as follows. For given ai'b;’, if
i is a point in Raj*bj*02, then set the output of the third stage

detector,
ci=0
otherwise, set
ci = 1.
Decoding C3: The binary vector ¢ = (C1,€2y ¢ cvvenennnnn Cn ) at

the output of the detector is passed to the binary code decoder for
code C3 which puts out the decoded word ¢*. The schematic

diagram of the third-stage decoder is shown in figure 4.8.
Let
C'= (Ci1*C2% - - - v r v nn cn*)

be the decoded codeword in the third stage of the decoding. This
completes the decoding process. a*, b* and ¢’ forms the decoded

set.

82



3rd label bit decision

N ©

c.

< | Decoder for code C3

Fig. 4.8 schematic diagram of the 3rd-stage hard-decision decoder

4.3 PERFORMANCE EVALUATION BY COMPUTER SIMULATION

Multi-stage decdding does reduce the décoding complexity
drastically, but it is sub-optimum. The probability of correct

decoding of the code is given by

Pc = Pct - Pc2jct - Pc3jc2,ct

where P4 is the probability of correctly decoding the first code, ’
Pc2ict is the probability of correctly decoding the second code
given that the first code was correctly decoded, and pg3)c2 ciis the

probability of correctly decoding the third code given that the first

two codes were correctly decoded.
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One source of potential loss is easily seen. if the decoding at
a certain stage is not correct, it may lead to decoding error in later
stages. In other words, multi-stage decoding may suffer from

error propagation.

The performance of the multi-stage decoding has been
evaluated by computer simulation for codes with different
minimum squared Euclidean distances and different code lengths
for both soft and hard decision decoding. The following codes were

chosen for simuiation.

Codel

This is a 3-level 8-PSK modulation code of length =16,

minimum squared Euclidean distance D[C) = 4. The code is given by
C = RM4,1* P16 * V16

The first component code C1 = RM41 has a 4-section 8-state
trellis, the second component code C2 = Pig has a 16-sections 2-
state trellis and the third component code C3 = Vi6 has a 16-
sections 1-state trellis. The modulation code C has a 16-state
trellis with complex inter-connection structure (discussed in

chapter 3).

The error-performance of the code with single-stage soft-
decision maximum likelihood decoding (optimum decoding) and

multi-stage soft-decision maximum likelihood decoding are shown
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in figure 4.9. Note that the difference in performance between
optimum decoding and suboptimum multi-stage decoding is 0.15 db
at BER 10-5. Furthermore, this difference becomes even smaller
at higher SNR. Hencs, soft-decision muiti-stage decoding for this
code provides great complexity advantage without any significant
loss in coding gain. For multi-stage decoding of this code, three
simple Viterbi decoders are required, one with 8-states (or four 2-
states decoders), second one with 2-state and third one with just
i{-state. Recall that optimum Viterbi decoder for this modulation
code requires sixteen o.state decoders plus some additional
circuits (designed discussed in chapter 3). On using multi-stage

decoding, we need total five 2-state and single 1-state decoders.
Code2:

The three binary component codes C{, C2 and C3 are as
follows: (1) Ci= P16’ is (16,1) repeatition code which consists of
all-one and all-zero 16-tuples; (2) C2=RM4 2 is second order Reed-
Muller code of length 16 ((16,11) code); (3) C3=P16 is the binary
(16,15) code with all the even weight 16 tuples. The basic 3-level
8-PSK modulation code C of length 16 constructed by these

component codes is given by
C = P16’ * RM4,2 " P16

The code has minimum squared Euclidean distance D[C]=8,
dimension K=27 and effective rate R[C}=27/32. The first

86



component code C{ = P1g' has a 16-section 2-state trellis, the
second component code C2 = RM4,2 has a 4-sections 8-state trellis
and the third component code C3 = Vig has a 16-sections 2-state
trellis. Hence, the modulation code C has a 32-states trellis.

The error-performance of the code with single-stage soft-
decision maximum likelihood decoding (optimum decoding) and
multi-stage soft-decision maximum likelihood decoding are shown
in figure 4.10. Note that the difference in performance between
optimum decoding and suboptimum multi-stage decoding is 0.30 db
at BER 10-5. Once again this difference becomes much smaller at
higher SNR. |

This code was also simulated for hard-decision multi-stage
decoding with (1) maximum likelihood decoding for all the three
component codes, (2) maximum likelihood decoding for C1 and C3
and majority logic decoding for C2 (RM4 2). The error performance
is shown in figure 4.11. The hard decision multi-stage decoding
(MSD) with all the code decoded with maximum likelihood decoder
results in loss of 1.6 db over the optimum decoding at BER 10-5
(still provides 2.5 db coding gain over the uncoded QPSK) whereas
the hard decision MSD with the second component code (RM4 2
code) decoded with majority logic decoding results in loss of 2.4 db
over the optimum decoding at BER 10-S (still provides 1.7 db coding
gain over the uncoded QPSK). The error-performance curve in figure
4.12 shows that this code, even with hard-decision MSD and
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majority-logic decoding for the second code, has better error
performance than (31,26,1) BCH code with the same rate.

codel:

This code was constructed using following components codes:
(1) C1= RMg 1 (2) C2= RMg,3 (3) C3= RMe 4, where RMm ¢ denotes
the r-th order Reed-Muller code of length 2™ and minimum
Hamming distance equal to 2M-f. The basic multi-level modulation

code C constructed by these component codes is given by
C = RMg,1* RMg, 3 * RMg 4

The code has minimum squared Euclidean distance D{C]=16,
length=64, dimension K=106 and effective rate R[{C]=106/128. The
first component code C1 = RMg,1 has a 4-section 32-state trellis,
the second component code C2 = RMg,3 has a 4-sections 1024-state
trellis and the third component code C3 = RMg 4 has a 4-sections
32.state trellis and each transition between two states consists

of 211 number of parallel branches !

Hence, it is obvious that maximum likelihood decoding of this
code is not practical even with hard-decision multi-stage decoding.
We use hard-decision multi-stage majority-logic decoding for each
component code. Each component code is decoded by a majority-
logic decoder. The error performance of this code is shown in
figure 4.13(a). Note that the coding gain is 2.5 db over the uncoded
QPSK at BER of 10°5.
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Fig.4.13(a) Error performance of Code3 with hard-decision MSD
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Fig. 4.13(b) Error performance of Code3 with Mixed MSD
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This code was also simulated for soft-decision maximum
likelihood decoding at first stage and hard decision majority logic
decoding at second and third stages. The error performance with
this decoding scheme is shown in figure 4.13(b). Note that using
this scheme improves the performance by 0.5db at BER of 10-5.

4

Thus, hard-decision multi-stage decoding further reduces the
decoding complexity of the modulation codes while stills maintains

reasonable coding gain over the uncoded system.

‘4.4 CONSTRUCTION OF MULTI-LEVEL CODES USING BCH
CODES AS COMPONENT CODES AND HARD DECISION MSD .

Some basic multi-level codes employing the multi-level
construction method (discussed in chapter 1) were constructed
using primitive BCH codes as component codes and their
performance have been evaluated by computer simulation for hard-

decision multi-stage decoding. ’

Let BCH(n,k,1) denotes a primitive BCH code of length n, where
k= number of message bits and t= designed error correcting
capability of the code. The designed minimum Hamming distance d

satisfies the following bound,

d 2 2t+1

94



Each component code is decoded by classical Berlekamp decoding
method for BCH codes.

The codes constructed are given in the table 4.1
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Table 4.1 Multi-level codes using BCH codes

Component code
C1°C2°C3

K

Dimension|Length

D{C]

RIC)

Coding gain
(BER 10-6)

Code1

BCH(127,29,21)
BCH(127,106,3)
BCH(127,120,1)

255

127

12

1.003

2.60 db

Code2

BCH(127,36,15)
BCH(127,106,3)
BCH(127,120,1)

262

127

12

1.030

1.85db

Code3

BCH(127,36,15)
BCH(127,106,3)
BCH(127,113,2)

255

127

14

1.003

1.85 db

Code4

BCH(127,50,13)
BCH(127,99,4)
BCH(127,106,3)

255

127

15

1.003

1.35db

Code5

BCH(255,45,43)
BCH(255,223,4)
BCH(255,247,1)

515

255

12

1.009

3.15db

Codeb

BCH(255,45,43)
BCH(255,231,4)
BCH(255,247,1)

523

255

12

1.025

3.10db
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Fig. 4.14 Error performance of the new codes with hard decision MSD
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CHAPTER 5§
CONCLUSIONS

We have seen that non-uniform floating point to integer
mapping of branch metric values reduces the branch and path
metrics range for Viterbi decoder for modulation codes with
negligible degradation in performance. Other non-uniform mapping
can be designed to further reduce the metric range by dividing the
entire floating point branch metric values into more than two
groups. These schemes can be evaluated by computer simulation.
Note that these schemes will work to reduce the hardware

complexity of Viterbi decoder for TCM codes as well.

The throughput of Viterbi decoder for 4-state code can be
improved by optimizing the path history circuit and control design.
Attempts can be made to reduce the number of steps presented in

the design.

The design of Viterbi decoder for 16-state code can be
simplified if we use a 32-state 16-section trellis diagram instead
of 8-state 4-section trellis diagram for the first level component
code. In that case, total 32 2-state simple Viterbi decoders will
be required to perform the decoding in parallel. Hardware
requirement is increased, but better decoding throughput can be
achieved. This scheme can be given the name ‘multi-decoder
decoding’ (MDD). MDD can be used for any 3-level 8-PSK modulation
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code for which (1) high decoding throughput is required, (2) the
trellis diagrams for the second and third level component codes are
relatively simple and (3) The number of codewords in the first
level component code is small. The idea is to combine the trelleses
of second and third component codes and then combine the resulting
trellis with each codeword in the first component code. |If there
are n number of codewords in the first component code, then

overall trellis diagram for the modulation code will consist of n
number of identical trelleses of low complexity without cross
connections among them. Each of these small trelleses can be
processed in parallel by a separate Viterbi decoder of low
complexity. Since these small decoders are identical, they can be
built easily using VLSI technology. Also, note that for MDD, the

first level component code need not have trellis structure.

Soft-decision multi-stage decoding reduces the hardware
complexity drastically and it is suboptimum. The difference in
performance between overall optimum decoding of modulation code
and soft-decision MSD is very small, a fraction of db in coding gain.
Furthermore, this difference becomes even smaller at higher SNR.
Hence, the soft-decision MSD offers very good trade-off between
performance and decoding complexity. Also, the multi-stage
decoding creates pipelined parallelism in decoding process, which
is desirable for high speed systems. For multi-stage decoding of
multi-level code, it might be a good idea to construct the multi-

level codes with
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31d1 > didi,
where 2 <i < /and / is the number of levels.

The performance of multi-level modulation code for optimum
and suboptimum decoding is determined mainly by the minimum
squared Euclidean distance of the code. Also, if the two multi-
level code has the same minimum squared Euclidean distance, the
one with the shorter length is better than the other one as far as
error performance for optimum and suboptimum decoding is

concerned.

For hard-decision MSD, it is the minimum Hamming distance
of the first level component code and not the minimum squared
Euclidean distance of the modulation code, which determines the
error performance. Hence, if the hard-decision MSb is to be
performed, the first component éode must be chosen to have as high
Hamming distance as possible to achieve reasonable coding gain
over uncoded system. Also, long and powerful codes should be used

as component codes.

If the soft-decision maximum likelihood decoding is
performed at the first-stage (this is possible, since the first stage
has the most powerful code which has, in general, trellis diagram
of reasonable complexity) and hard-decision decoding at other
stages, then most of the loss (1.5-2.0 db) resulting from the hard-

decision decoding at all the stages, can be recovered. This could be
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another attractive and practical scheme for decoding of muiti-
level modulation code.

Finally, the advantages of multi-level codes with multi-stage
decoding over trellis codes are as follows. Multi-level codes
provide a flexible choice of the trade-off between coding gain,
decoding complexity and decoding delay. The decoding complexity
of trellis codes increase twice as the coding gain increases 0.4 db
by optimum Viterbi decoding algorithm [22]). Multi-stage decoding
algorithm for multi-level codes can achieve the designed distance
with relatively small decoding complexity. Moreover, unlike trellis
codes, gbod multi-level codes can be constructed by using

previously known codes and proper mapping technique.
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